Reactions of Pyryliums with Mono- and asym-Di-substituted Hydrazines

By Alan R. Katritzky,*'§ Paloma Ballesteros, and Alberto Tarraga Tomas, School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ

Abstract

Literature data on the title reactions are reviewed and further examples given particularly with dialkylhydrazines and hydrazones. Compounds derived from 2-ethoxycarbonyl-4,6-diphenylpyrylium tend to cyclise and new examples of the dihydropyrazoloquinoline (27) and oxidopyrido [1,2-b]pyridazinium [(62)-(64)] ring systems are described.

Recent work from this laboratory has emphasised the synthetic utility of the general sequence $(1) \longrightarrow(5)$ to transform the primary aliphatic and aromatic aminofunctions (2) into others by reaction with cyclic oxoniums (pyryliums) (1), via the cyclic azonium (3). ${ }^{\mathbf{1}}$ We are now investigating the potential utilisation of cyclic azoniums (3) in which the R-group is linked by a nitrogen atom; the present paper records investigation of the preparation of such compounds by the reaction of pyryliums with mono- and di-substituted hydrazines.

There is considerable, scattered literature work on this topic, but it has only been reviewed in part. ${ }^{2}$ We
containing BF_{3}-diethyl ether, (25) cyclised to the dihydropyrazoloquinoline (27), a ring system previously reported by Elguero et al. ${ }^{6}$ The structure (27) was supported by analysis and by $v(\mathrm{C}=\mathrm{O})$ at $1695 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ n.m.r. showed the aromatic and ethyl protons signals and additionally a CH_{2} singlet at $\delta 3.55$ and a $: \mathrm{CH}$. singlet at 6.29. ${ }^{13} \mathrm{C}$ N.m.r. data are in agreement with this structure. The conversion (25) \rightarrow (27) probably involves (26a) as an intermediate. Reaction of (24) with p-nitrophenylhydrazine gave only the pyrazoline (26b).

Dialkyl (or Aryl) Hydrazines.-Reactions with pyryliums proceed smoothly. Schneider reported the con-

review previous work, and our new results, on reactions of pyryliums with five classes of hydrazines in turn: (i) monoalkyl (aryl) hydrazines (6), (ii) dialkyl (aryl) hydrazines (7), (iii) acyl and thioacyl hydrazides (8), (iv) other hydrazines monosubstituted with an electronwithdrawing group (9), and (v) hydrazones (10).

Monoalkyl (or Aryl) Hydrazines.-Much work has been done, ${ }^{3}$ and the reactions are often complex. The triphenylpyrylium perchlorate (11) with $\mathrm{PhN}_{2} \mathrm{H}_{3}$ gives (13); this is converted by refluxing in acetic acid into the pyridinium (15). In refluxing ethanol (13) gives (20), the latter loses PhCOCH_{3} with acid to form the pyrazole (22). ${ }^{4}$ Snieckus ${ }^{5}$ found that the reaction of $\mathrm{MeN}_{2} \mathrm{H}_{3}$ with pyryliums gave products of types (21), (23), and (16) together with diazepines, depending on the pyrylium substituents, anion, solvent, and reaction time.

We found that the ethoxycarbonylpyrylium (24) and phenylhydrazine in cold ethanol gave solely the hydrazone (25) which showed the CH_{2} singlet at $\delta 4.06$ in addition to the Et peaks: on heating in ethanol it cyclised to the pyrazoline (26a). In refluxing acetic acid
§Permanent Address: Department of Chemistry, University
Florida, Gainesville, Florida, U.S.A. of Florida, Gainesville, Florida, U.S.A.
version of 2 -methyl-4,6-diphenylpyrylium iodide into the salts (28) and (29), ${ }^{7}$ and Schmidt and Berger the preparation of (17). ${ }^{8}$

Reaction of 1,1-dimethylhydrazine with triphenylpyrylium (12) in dichloromethane gives the pyrazolinium cation (30) identified by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectroscopy. Particularly significant in the ${ }^{1} \mathrm{H}$ n.m.r. spectra, there were two AB quartets for the methylene groups and two singlets for the N-methyls [Balaban and Silhan similarly found two AB -quartets for the methylene group of (20)]. However, in cold methanol, this reaction gave the hydrazone (14): this on treatment with pyridine and perchloric acid gave initially the pyrazolium (31) which at $100^{\circ} \mathrm{C}$ was converted into the dimethylaminopyridinium perchlorate (17), m.p. $209{ }^{\circ} \mathrm{C}$, previously reported ${ }^{8}$ with m.p. $177{ }^{\circ} \mathrm{C}$. Later, we found that in refluxing methanol the desired tetrafluoroborate (18) could be formed directly in 82% yield. Compound (19) was similarly prepared from 1 -aminopiperidine. The more reactive pyrylium (24) gave (32) directly in cold ethanol, whereas from the less reactive oxadiazolium (33) ${ }^{10}$ it was necessary to isolate intermediate (35) and cyclise to (34) in refluxing $\mathrm{HClO}_{4}-\mathrm{HOAc}(c f$. ref. 11).

PhCo. $\mathrm{CH}: \mathrm{CPhCH}_{2} \mathrm{CPh}: \mathrm{NR}$
(11) $\mathrm{X}=\mathrm{ClO}_{4}$
(13) $\mathrm{R}=\mathrm{NHPh}$
(12) $X \quad B F_{4}$
(14) $\mathrm{R}=\mathrm{NMe}_{2}$

(15) $\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{X}=\mathrm{ClO}_{4}$
(16) $R=M e, R^{\prime}=H$
(17) $R=R^{\prime}=\mathrm{Me}, X=\mathrm{ClO}_{4}$
(18) $R=R^{\prime}=M e \quad X=B F_{4}$
(19) $R, R^{\prime}=\left(\mathrm{CH}_{2}\right)_{5}, X=B F_{4}$

(20) $\mathrm{R}=\mathrm{Ph}$
(22) $\mathrm{R}=\mathrm{Ph}$
(21) $R=M e$
(23) $\mathrm{R}=\mathrm{Me}$

Various attempts were made to transfer the dimethyl-amino-group of (18) to nucleophilic centres (pyridine, triphenylphosphine, and malonate anions). Starting material was recovered, or under forcing conditions tri-

(24)

(26) $a ; X=H$
b; $X=\mathrm{NO}_{2}$
phenylpyridine was isolated with indications that elimination to give the imine $\mathrm{MeN}=\mathrm{CH}_{2}$ had occurred ($c f$. ref. 12).

Acylhydrazides.-We recently reported the smooth
reaction of various acylhydrazines $\mathrm{RCONHNH}_{2}$ with 2,4,6-triphenylpyrylium to give compounds of type (36): ${ }^{13}$ the corresponding sulphur derivatives were stable only as salts. Neidlein and Witerzens converted 2,4,6-trimethylpyrylium into salts analogous to (38), (39), (41), and (42); ${ }^{14}$ the salt corresponding to (40) had

(28) $R=M e$
(29) $\mathrm{R}=\mathrm{Ph}$

(32)

(30) $X=\mathrm{BF}_{4}$
(31) $X=\mathrm{ClO}_{4}$

ClO_{4}^{-}
(33) $Z=0$
(34) $Z=$ NNMe $_{2}$
PhCO.NH•NPh.CPh:N•NMe2
(35)
been reported earlier, ${ }^{15}$ as had the analogue from 2,6-dimethyl-4-ethylpyrylium. ${ }^{15}$ However, semicarbazide with triphenylpyrylium was reported to give only the bissemicarbazone (44). ${ }^{16}$

Under the previous conditions with benzohydrazide, ${ }^{13}$ the triphenylpyrylium tetrafluoroborate (12) gave the

(36) $R=$ alkyl or aryl
(37) $\mathrm{R}=\mathrm{NH}_{2}$

(38) $R=$ alkyl or aryl
(39) $R=$ PhNH
(40) $R=\mathrm{NH}_{2}$
(41) $\mathrm{R}=\mathrm{NH}_{2}$
(42) $\mathrm{R}=\mathrm{PhNH}$
(43) $R=$ aryl

(1) $\mathrm{R}=\mathrm{NH}_{2}$
$\mathrm{NH}_{2} \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{N}=\mathrm{CPh} \cdot \mathrm{CH}=\mathrm{CPh} \cdot \mathrm{CH}_{2} \cdot \mathrm{CPh}=\mathrm{N} \cdot \mathrm{NH} \cdot \mathrm{CONH}_{2}$

(45) $\mathrm{Z}=0$
(46) $Z=N \bar{N} C O P h$

(47)
 (44)
expected salt ($36 ; \mathrm{R}=\mathrm{Ph}$), but the tricyclic pyrylium (45) formed a mixture of the imide (46) and the bishydrazone (47).

In our hands semicarbazide reacted smoothly with (12) and (24) to form the ureido-derivatives (37) and (48), respectively. The ethoxycarbonylurea (48) cyclised on

treatment with potassium carbonate in dimethoxyethane to give the zwitterionic (49): a similar compound has been previously reported. ${ }^{17}$

Other Monosubstituted Hydrazines with Electron-withdrawing Groups.-Lempert treated benzenesulphonohydrazide both with triphenyl- and other substituted pyryliums and obtained pyrazoliums of type (50) or (51); in some cases these could be converted into the corresponding imines (52). ${ }^{18}$ Amidrazones react smoothly with triphenylpyrylium to give (53). ${ }^{19}$

Hydrazones.-Acetophenone hydrazone with trimethylpyrylium yields the cation (54). ${ }^{14}$ Analogous 4pyridones have been prepared by ring closure of the bisacetylene (55), ${ }^{20}$ and from 1 -aminopyridiniums. ${ }^{21}$

The triphenylpyrylium (12) did not give the expected product with benzaldehyde hydrazone. The more reactive 2 -ethoxycarbonylpyrylium (24) gave N-alkylideneaminopyridiniums (56) and (57) with aldehyde hydr-

(54)

(55)
azones, and (58)-(61) with ketone hydrazones. Treatment of the ketone derivatives with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in THF at $20^{\circ} \mathrm{C}$ gave the cyclised oxidopyrido $[1,2-b]$ pyridaziniums (62)-(64): reduced ${ }^{22}$ and fully aromatic ${ }^{23}$ derivatives of this ring system have previously been reported.

(56) $\mathrm{R}=\mathrm{Ph}$
(57) $\mathrm{R}=\mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4}$

(58) $R=P h$
(59) $R=p-\mathrm{BrC}_{6} \mathrm{H}_{4}$
(60) $R=p-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(61) $R=4$-pyridyl

EXPERIMENTAL

I.r. spectra were measured for samples in CHBr_{3} solution, and n.m.r. spectra (60 and 100 MHz) for solutions in CDCl_{3} or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ (SiMe_{4} as internal reference). When substances are stated to be identical, this refers to comparison by m.p., mixed m.p., and i.r. spectra.

The following were prepared by the literature methods indicated: 2,4,6-Triphenylpyrylium tetrafluoroborate (12), m.p. $252{ }^{\circ} \mathrm{C}$ (lit., ${ }^{24}$ m.p. $253-255^{\circ} \mathrm{C}$) ; 2-ethoxycarbonyl-4,6diphenylpyrylium tetrafluoroborate (24), m.p. $168-170{ }^{\circ} \mathrm{C}$ (lit., ${ }^{25} \mathrm{~m} . \mathrm{p} .153{ }^{\circ} \mathrm{C}$); 2,3,5-triphenyloxadiazolium perchlorate (33), m.p. $272{ }^{\circ} \mathrm{C}$ (lit., 1^{10} m.p. $272{ }^{\circ} \mathrm{C}$ decomp.) ; 2,4diphenylbenzo $[h]$ chromenylium tetrafluoroborate (45), m.p. $265{ }^{\circ} \mathrm{C}$ (lit., ${ }^{26}$ m.p. $270{ }^{\circ} \mathrm{C}$); 1-benzamido-2,4,6-triphenylpyridinium (36), m.p. $218-220^{\circ} \mathrm{C}$ (lit.,$^{13 b} \mathrm{~m} . \mathrm{p} .204{ }^{\circ} \mathrm{C}$).

5-Ethoxycarbonyl-1,3-diphenylpent-3-ene-1,5-dione 1 Phenylhydrazone (25).-2-Ethoxycarbonyl-4,6-diphenylpyrylium tetrafluoroborate ($2 \mathrm{~g}, 5 \mathrm{mmol}$), $\mathrm{MeOH}(20 \mathrm{ml}$), and phenylhydrazine $(2.16 \mathrm{~g}, 10 \mathrm{mmol})$ were stirred at $20^{\circ} \mathrm{C}$ for 30 min . The hydrazone separated ($1.5 \mathrm{~g}, 73 \%$ yield), m.p. $131{ }^{\circ} \mathrm{C}$ (prisms from MeOH) (Found: C, 75.5; H, 5.9; $\mathrm{N}, 6.7 . \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.7 ; \mathrm{H}, 5.8 ; \mathrm{N}, 6.8 \%$); $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3280,1705,1670,1600,1560,1510,1500$, $1490,1450,1370,1290,1230,760$, and $750 \mathrm{~cm}^{-1}$; δ $\left(\dot{\mathrm{C} D C l}_{3}\right) 8.85(1 \mathrm{H}, \mathrm{s}), 7.4(15 \mathrm{H}, \mathrm{m}), 6.5(1 \mathrm{H}, \mathrm{s}), 4.22(2 \mathrm{H}$, q), $4.06(2 \mathrm{H}, \mathrm{s})$, and $1.3(3 \mathrm{H}, \mathrm{t})$.

5-(2-Ethoxycarbonyl-2-oxoethyl)-1,3,5-triphenyl-2-pyrazoline (26a).-5-Ethoxycarbonyl-1,3-diphenylpent-3-ene-1,5dione 1-phenylhydrazone ($0.28 \mathrm{~g}, 0.68 \mathrm{mmol}$) was refluxed in $\mathrm{EtOH}(8 \mathrm{ml})$ for 1 h . On cooling the pyrazoline (0.25 g , 89%) separated as prisms, m.p. $118-119{ }^{\circ} \mathrm{C}$ from EtOH (Found: C, 75.6; H, 5.9; N, 6.7. $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, $75.7 ; \mathrm{H}, 5.8 ; \mathrm{N}, 6.8 \%$) ; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1690,1600,1560$, $1500,1450,1355,1300,1250$, and $750 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right)$ $7.3(15 \mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{q}), 3.90(2 \mathrm{H}, \mathrm{dd}, J 18 \mathrm{~Hz}), 3.68$ $(2 \mathrm{H}, \mathrm{dd}, J 18 \mathrm{~Hz})$, and $1.35(3 \mathrm{H}, \mathrm{t})$.

5-Ethoxycarbonyl-3,3a-dihydro-2,3a-diphenylpyrazolo-
[1,5-a]quinoline (27).-5-Ethoxycarbonyl-1,3-diphenylpent3 -ene-1,5-dione 1 -phenylhydrazone ($0.42 \mathrm{~g}, 0.001 \mathrm{~mol}$), glacial HOAc (5 ml), and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(45 \%, 0.5 \mathrm{ml})$ were refluxed for 15 min , and the solvent removed at $20^{\circ} \mathrm{C} / 20$ mmHg . The red crude product was recrystallised from 95% EtOH (0.20 g, 51% yield), m.p. $155{ }^{\circ} \mathrm{C}$ (yellow prisms from 95% EtOH) (Found: C, 79.1; H, 5.6; N, 6.9. $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.2 ; \mathrm{H}, 5.6 ; \mathrm{N}, 7.1 \%)$; $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1695$, $1600,1590,1480,1315,1250,1090,770$, and $750 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.4(14 \mathrm{H}, \mathrm{m}), 6.29(1 \mathrm{H}, \mathrm{s}), 4.3(2 \mathrm{H}, \mathrm{q}), 3.55$ $(2 \mathrm{H}, \mathrm{s})$, and $1.35(3 \mathrm{H}, \mathrm{t}) ;{ }^{13} \mathrm{C}$ n.m.r., $\delta\left(\mathrm{CDCl}_{3}\right) 14(\mathrm{q}, \mathrm{Me})$, 48 (t, C-3), 61 (t, OCH_{2}), 68 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 116 ($\mathrm{s}, \mathrm{C}-5$), 121 (d, $\mathrm{C}-4$), 131 (m , aromatics), 145 ($\mathrm{s}, \mathrm{C}-2$), and 162 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

5-(2-Ethoxycarbonyl-2-oxoethyl)-1-p-nitrophenyl-3,5-
diphenyl-2-pyrazoline (26b).-2-Ethoxycarbonyl-4,6-diphenylpyrylium tetrafluoroborate ($1 \mathrm{~g}, 2.55 \mathrm{mmol}$) and p nitrophenylhydrazine ($0.382 \mathrm{~g}, 2.55 \mathrm{mmol}$) in EtOH (50 ml), were stirred at $20^{\circ} \mathrm{C}$ for 2 h . The pyrazoline ($0.7 \mathrm{~g}, 59 \%$) separated and formed prisms, m.p. $150-152^{\circ} \mathrm{C}$ from MeOH (Found: C, 68.4; H, 4.9; N, 9.1. $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, $68.3 ; \mathrm{H}, 5.0 ; \mathrm{N}, 9.2 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1700,1600,1580$, $1500,1450,1335,1305,1250,840,760$, and $750 \mathrm{~cm}^{-1}$; δ $\left(\mathrm{CDCl}_{3}\right) 7.4(14 \mathrm{H}, \mathrm{m}), 4.3(2 \mathrm{H}, \mathrm{q}), 4.06(2 \mathrm{H}, \mathrm{dd}, J 18 \mathrm{~Hz})$, $3.68(2 \mathrm{H}, \mathrm{dd}, J 18 \mathrm{~Hz})$, and $1.36(3 \mathrm{H}, \mathrm{t})$.

1,1-Dimethyl-5-phenacyl-3,5-diphenyl-2-pyrazolinium

Tetrafluoroborate (30).-2,4,6-Triphenylpyrylium tetrafluoroborate ($1 \mathrm{~g}, 2.5 \mathrm{mmol}$), dimethylhydrazine $(0.18 \mathrm{ml}$, $0.0025 \mathrm{~mol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ were stirred for 15 min , then HOAc (0.1 ml) was added. After 1 h the pyrazolinium salt started to separate ($0.7 \mathrm{~g}, 61 \%$), m.p. $154-155{ }^{\circ} \mathrm{C}$ (prisms from EtOH-Me ${ }_{2} \mathrm{CO}$) (Found: C, 65.7; H, 5.4; N, 6.1. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}$ requires C, 65.8; $\mathrm{H}, 5.5 ; \mathrm{N}, 6.1 \%$); $v_{\text {max }}$ $\left(\mathrm{CHBr}_{3}\right) 3060,2940,1680,1610,1600,1570,1500$, $1450,1360,1310,1230,1080,760$, and $740 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2^{-}}\right.$ SO; 60 MHz 8.2-7.7 ($15 \mathrm{H}, \mathrm{m}$), $5.1(2 \mathrm{H}, \mathrm{q}, J 18 \mathrm{~Hz}), 4.2$ $(2 \mathrm{H}, \mathrm{q}, J 18 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s})$, and $2.9(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ n.m.r., $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 175(\mathrm{~s}, \mathrm{C}-3), 52-43\left(\mathrm{~m}, \mathrm{C}-4, \mathrm{~N} M e, \mathrm{~N} M e^{\prime}\right.$, and 5- CH_{2}), $194(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, and $136-117$ (aromatics).

1,3,5-Triphenylpent-3-ene-1,5-dione 1-NN-Dimethylhydrazone (14).-To 2,4,6-triphenylpyrylium tetrafluoroborate ($10 \mathrm{~g}, 25 \mathrm{mmol}$) and $\mathrm{MeOH}(100 \mathrm{ml})$, was added at $20{ }^{\circ} \mathrm{C}$ dimethylhydrazine ($3.6 \mathrm{ml}, 50 \mathrm{mmol}$). After 1 min the hydrazone crystallised ($6.7 \mathrm{~g}, 73 \%$), m.p. $107-109{ }^{\circ} \mathrm{C}$ (prisms from absolute EtOH) (Found: C, 81.3; H, 6.6; N, 7.4. $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.5 ; \mathrm{H}, 6.5 ; \mathrm{N}, 7.6 \%$); $v_{\text {max. }}$ $\left(\mathrm{CHBr}_{3}\right) 3060,2960,2890,2860,2820,2780,1690,1620$, $1600,1580,1500,1490,1430$, 1330 , 1310 , 1070 , 1020 , 1000,980 , and $700 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) 7.45(15 \mathrm{H}, \mathrm{m})$, $6.8(1 \mathrm{H}, \mathrm{s}), 4.05(2 \mathrm{H}, \mathrm{s})$, and $2.7(6 \mathrm{H}, \mathrm{s})$.

1,1-Dimethyl-5-phenacyl-3,5-diphenylpyrazolinium Perchlorate (31).-1,3,5-Triphenylpent-3-ene-1,5-dione 1-NNdimethylhydrazone ($1 \mathrm{~g}, 2.7 \mathrm{mmol}$), pyridine (5 ml), and $\mathrm{HClO}_{4}(0.2 \mathrm{ml})$ were kept at $20^{\circ} \mathrm{C}$ for 1 min . Pyridine was removed at $20 \mathrm{mmHg} / 100^{\circ} \mathrm{C}$ and $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ were added to give the pyrazolinium salt ($0.5 \mathrm{~g}, 40 \%$) m.p. $135{ }^{\circ} \mathrm{C}$ (prisms from absolute EtOH) (Found: C, 64.3 ; H, $5.5 ; \mathrm{N}, 5.9 . \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 64.0 ; \mathrm{H}, 5.4 ; \mathrm{N}$, $6.0 \%)$; $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3060,3040,2980,2960,2940$, $1685,1605,1595,1580,1570,1500$, 1450 , 1360 , 1310 , $1230,1110,1000,760$, and $745 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 60\right.$ $\mathrm{MHz}] 8.2-7.7(15 \mathrm{H}, \mathrm{m}), 5.0(2 \mathrm{H}, \mathrm{q}, J 18 \mathrm{~Hz}), 4.15(2 \mathrm{H}$, $\mathrm{q}, j 18 \mathrm{~Hz}), 3.7(3 \mathrm{H}, \mathrm{s})$, and $2.9(3 \mathrm{H}, \mathrm{s})$.

1-Dimethylamino-2,4,6-triphenylpyridinium Perchlorate (17).-Hydrazone (14) ($3 \mathrm{~g}, 8.1 \mathrm{mmol}$), pyridine (15 ml), and 78% aqueous $\mathrm{HClO}_{4}(0.7 \mathrm{ml})$ were heated at $100{ }^{\circ} \mathrm{C}$ for 3 h .

Pyridine was removed at $20 \mathrm{mmHg} / 100^{\circ} \mathrm{C}$ and the residue was crystallised from EtOH to give the pyridinium (1 g , 27%), m.p. $209^{\circ} \mathrm{C}$ (prisms from EtOH) (lit., ${ }^{8}$ m.p. $177{ }^{\circ} \mathrm{C}$) (Found: C, 66.4; H, 5.1; N, 5.9. Calc. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4}$: $\mathrm{C}, 66.6 ; \mathrm{H}, 5.1 ; \mathrm{N}, 6.2 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3060,2960$, $1620,1600,1500,1495,1445,1415,1250,1090,890$, and $760 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) 7.55(17 \mathrm{H}, \mathrm{m})$ and $2.5(6 \mathrm{H}, \mathrm{s})$.

1-Dimethylamino-2,4,6-triphenylpyridinium Tetrafluoroborate (18).-2,4,6-Triphenylpyrylium tetrafluoroborate (10 g, 0.025 mol), dimethylhydrazine ($3.6 \mathrm{ml}, 0.05 \mathrm{~mol}$), and $\mathrm{MeOH}(100 \mathrm{ml})$ were kept at $20^{\circ} \mathrm{C}$ for 30 min and then refluxed for 5 h . Solvent was removed at $20 \mathrm{mmHg} / 100^{\circ} \mathrm{C}$ when $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ was added; the pyridininum salt separated ($9 \mathrm{~g}, 82 \%$), m.p. $199^{\circ} \mathrm{C}$ (prisms from absolute EtOH) (Found: C, 68.3; H, 5.2; N, 6.3. $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{BF}_{4} \mathrm{~N}_{2}$ requires $\mathrm{C}, 68.5 ; \mathrm{H}, 5.3 ; \mathrm{N}, 6.4 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3050,2920,1610$, $1590,1500,1490,1440,1410,1355,1280,1235,1050$, 925,895 , and $755 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) 7.4(17 \mathrm{H}, \mathrm{m})$ and $2.45(6 \mathrm{H}, \mathrm{s})$.

1-Piperidino-2,4,6-triphenylpyridinium Tetrafluoroborate (19).-2,4,6-Triphenylpyrylium tetrafluoroborate ($5 \mathrm{~g}, 0.013$ mol), 1-aminopiperidine, and $\mathrm{MeOH}(50 \mathrm{ml})$ were stirred at $20^{\circ} \mathrm{C}$ for 30 min , and then refluxed for 15 h . Solvent was removed at $20 \mathrm{mmHg} / 100^{\circ} \mathrm{C}$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ added to give the pyridinium ($3 \mathrm{~g}, 48 \%$), m.p. $225-227{ }^{\circ} \mathrm{C}$ (prisms from absolute EtOH) (Found: C, 70.3; H, 5.9; N, 5.8. $\mathrm{C}_{28} \mathrm{H}_{27}{ }^{-}$ $\mathrm{BF}_{4} \mathrm{~N}_{2}$ requires $\left.\mathrm{C}, 70.3 ; \mathrm{H}, 5.7 ; \mathrm{N}, 5.8 \%\right)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right)$ $3060,2940,2850,1615,1595,1555,1490$, 1440 , 1410 , $1275,1235,1050,910,880$, and $755 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}, 60\right.$ $\mathrm{MHz}) 8.2-7.6(17 \mathrm{H}, \mathrm{m}), 2.95(4 \mathrm{H}, \mathrm{m})$, and $1.0(6 \mathrm{H}, \mathrm{m})$.

1-Dimethylamino-2-ethoxycarbonyl-4,6-diphenylpyridinium Tetrafluoroborate (32).-2-Ethoxycarbonyl-4,6-diphenylpyrylium tetrafluoroborate ($0.78 \mathrm{~g}, 2 \mathrm{mmol}$) was suspended in absolute $\mathrm{EtOH}(8 \mathrm{ml})$ and $N N$-dimethylhydrazine $(0.12 \mathrm{~g}$, 2 mmol) was added dropwise. The solution was stirred at $20^{\circ} \mathrm{C}$ for 12 h , when the pyridinium separated $(0.50 \mathrm{~g}, 58 \%$ yield), m.p. 202-203 ${ }^{\circ} \mathrm{C}$ (prisms from EtOH) (Found: $\mathrm{C}, 60.7 ; \mathrm{H}, 5.3 ; \mathrm{N}, 6.4 . \quad \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 60.8$; $\mathrm{H}, 5.3$; $\mathrm{N}, 6.4 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1740,1620,1600,1380$, $1300,1255,1210,1060,780$, and $755 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right)$ $7.65(12 \mathrm{H}, \mathrm{m}), 4.5(2 \mathrm{H}, \mathrm{q}), 2.88(6 \mathrm{H}, \mathrm{s})$, and $1.4(3 \mathrm{H}, \mathrm{t})$.
2-Benzoyl-4,4-dimethyl-1-phenylbenzohydrazide Hydrazone (35).-2,3,5-Triphenyl-1,3,4-oxadiazolium perchlorate (7.1 g, $18 \mathrm{mmol})$, dimethylhydrazine ($2.73 \mathrm{ml}, 36 \mathrm{mmol}$), and MeOH $(76 \mathrm{ml})$ were stirred at $20{ }^{\circ} \mathrm{C}$ for 24 h . The hydrazone crystallised ($4 \mathrm{~g}, 62 \%$), m.p. $165{ }^{\circ} \mathrm{C}$ (prisms from EtOH) (Found: C, 73.5; H, 6.1; N, 15.6. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}$ requires C, 73.7 ; $\mathrm{H}, 6.2$; $\mathrm{N}, 15.6 \%)$; $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3060,2980,2900$, $2860,2820,2780,1690$, 1600 , 1580 , 1550 , 1490 , 1465 , $1340,1290,1270,1225,1070,1025,960,940,800,775$, and $750 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) 8(3 \mathrm{H}, \mathrm{m}), 7.2(13 \mathrm{H}, \mathrm{m})$, and $2.65(6 \mathrm{H}, \mathrm{s})$.

4-Dimethylamino-1,3,5-triphenyl-s-triazolium Perchlorate (34).-2-Benzoy]-4,4-dimethyl-1-phenylbenzohydrazide hydrazone (35) ($3.2 \mathrm{~g}, 9 \mathrm{mmol}$), $\mathrm{HOAc}(11 \mathrm{ml})$, and HClO_{4} (1 ml) were refluxed for 30 min . On cooling, the triazolium salt crystallised ($1.9 \mathrm{~g}, 48 \%$), m.p. $302-303{ }^{\circ} \mathrm{C}$ (needles from $\mathrm{Me}_{2} \mathrm{CO}$) (Found: C, 59.8; H, 4.5; N, 12.6. $\mathrm{C}_{22} \mathrm{H}_{21}{ }^{-}$ $\mathrm{ClN}_{4} \mathrm{O}_{4}$ requires C, $\left.59.9 ; \mathrm{H}, 4.8 ; \mathrm{N}, 12.7 \%\right)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right)$ $3060,2960,2800,1600,1550,1500,1480,1450,1375$, $1300,1090,1025,790,765$, and $740 \mathrm{~cm}^{-1} ; \delta\left[\mathrm{CDCl}_{3}-\left(\mathrm{CD}_{3}\right)_{2^{-}}\right.$ SO, 60 MHz 8.1-7.4 $(15 \mathrm{H}, \mathrm{m})$ and $2.9(6 \mathrm{H}, \mathrm{s})$.

5,6-Dihydro-2,4-diphenylbenzo[h]quinoline 1-Benzoylimide (46).-2,4-Diphenylbenzo[$h]$ chromenylium tetrafluoroborate ($10 \mathrm{~g}, 23 \mathrm{mmol}$), benzohydrazide ($6.39 \mathrm{~g}, 0.047 \mathrm{~mol}$),
and EtOH (160 ml) were refluxed for 26 h . The cold reaction mixture was filtered and the solvent removed at $20 \mathrm{mmHg} / 100^{\circ} \mathrm{C}$. Addition of $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ gave a crude product $(6.3 \mathrm{~g})$. This $(2.3 \mathrm{~g})$ was treated with $\mathrm{KOH}(0.26$ g) in $\mathrm{MeOH}(10 \mathrm{ml})$ at $20^{\circ} \mathrm{C}$ for 20 min . The solution was filtered and solvent removed at $20 \mathrm{mmHg} / 100{ }^{\circ} \mathrm{C}$. The residue was partially soluble in hot toluene from which the benzoylimine ($200 \mathrm{mg}, 5 \%$) crystallised as prisms (m.p. $198-200{ }^{\circ} \mathrm{C}$) (Found: C, 84.8; H, 6.1; N, 5.3. $\mathrm{C}_{32} \mathrm{H}_{24}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}$ requires C, 84.9; H, 6.2; N, 5.3\%); $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right)$ $3050,2940,1610,1590,1550,1490,1440,1410,1335$, $1295,1200,1025,900,785,765$, and $700 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right.$, $60 \mathrm{MHz}) 7.9-7.1(20 \mathrm{H}, \mathrm{m})$ and $2.9(4 \mathrm{H}, \mathrm{s})$.

The residue insoluble in toluene crystallised from absolute EtOH to yield the bishydrazone (47) (2 g, 40\%), m.p. 244$246{ }^{\circ} \mathrm{C}$ as prisms (Found: C, 79.3; H, 5.4; N, 9.5. $\mathrm{C}_{39}{ }^{-}$ $\mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 79.7 ; \mathrm{H}, 5.3 ; \mathrm{N}, 9.6 \%\right)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right)$ $3220,3060,2980,2820,1675,1670,1575,1520$, 1480 , $1445,1410,1350,1340,1270,1180,1025,870,800,780$, and $760 \mathrm{~cm}^{-1}$.

2,4,6-Triphenyl-1-ureidopyridinium Tetrafluoroborate (37). -2,4,6-Triphenylpyrylium tetrafluoroborate ($1 \mathrm{~g}, 2.5 \mathrm{mmol}$) in $\mathrm{EtOH}(7.5 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{ml})$, and semicarbazide hydrochloride ($0.281 \mathrm{~g}, 2.5 \mathrm{mmol}$) and sodium hydroxide $(0.1 \mathrm{~g}, 2.5 \mathrm{mmol})$ in water (3 ml) were mixed and refluxed for 12 h . The solvent was removed ($30^{\circ} \mathrm{C}, 20 \mathrm{mmHg}$) and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ precipitated the pyridinium ($0.7 \mathrm{~g}, 62 \%$), prisms m.p. $216-219^{\circ} \mathrm{C}$ from EtOH (Found: C, 63.5; H, 4.6; N, 9.1. $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 63.6 ; \mathrm{H}, 4.4 ; \mathrm{N}, 9.3 \%$); $\nu_{\text {max. }}$ $\left(\mathrm{CHBr}_{3}\right) 3450,3350,3200,1680,1620,1600,1510$, $1460,1420,1340,1250,1075,885,760$, and $740 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.5(1 \mathrm{H}, \mathrm{s}), 7.9(17 \mathrm{H}, \mathrm{m})$, and 6.12 ($2 \mathrm{H}, \mathrm{s}$).

2-Ethoxycarbonyl-4,6-diphenyl-1-ureidopyridinium Tetrafluoroborate (48).-2-Ethoxycarbonyl-4,6-diphenylpyrylium tetrafluoroborate ($1 \mathrm{~g}, 2.55 \mathrm{mmol}$) in $\mathrm{EtOH}(7.5 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{ml})$, and semicarbazide hydrochloride $(0.284 \mathrm{~g}$, 2.55 mmol) and sodium hydroxide ($0.1 \mathrm{~g}, 2.55 \mathrm{mmol}$) in water (3 ml) were mixed and refluxed for 3 h . The solvent was removed ($30^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$) and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml}) . \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ precipitated the pyridinium ($0.63 \mathrm{~g}, 56 \%$), prisms m.p. $185-186{ }^{\circ} \mathrm{C}$ from EtOH (Found: C, 56.1; H, 4.4; N, 9.1. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, $56.1 ; \mathrm{H}, 4.4 ; \mathrm{N}, 9.3 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3440$, $3340,3210,1745,1690,1620,1600,1070$, and $765 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.83(1 \mathrm{H}, \mathrm{d}), 8.68(1 \mathrm{H}, \mathrm{d}), 6.57(2 \mathrm{H}, \mathrm{s}), 7.9$ $(11 \mathrm{H}, \mathrm{m}), 4.44(2 \mathrm{H}, \mathrm{q})$, and $1.38(3 \mathrm{H}, \mathrm{t})$.

6,8-Diphenyl-4-oxo-3H-pyrido[2,1-f]-1,2,4-triazinium 2Oxide (49).-2-Ethoxycarbonyl-4,6-diphenyl-1-ureidopyridinium tetrafluoroborate ($0.100 \mathrm{~g}, 0.22 \mathrm{mmol}$) in dimethoxyethane (4 ml) and potassium carbonate ($0.06 \mathrm{~g}, 0.44 \mathrm{mmol}$) were stirred at $20^{\circ} \mathrm{C}$ for 2 h . Water (20 ml) was added and the whole extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. The dry $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ extracts were evaporated ($20^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$) to give the oxide ($0.58 \mathrm{~g}, 83 \%$), prisms m.p. $>325{ }^{\circ} \mathrm{C}$ from EtOH (Found: $\mathrm{C}, 72.2 ; \mathrm{H}, 4.0 ; \mathrm{N}, 13.1 . \quad \mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 72.4 ; \mathrm{H}$, 4.1; $\mathrm{N}, 13.3 \%$); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1710,1630,1610,1560$, $1480,1440,1400,830,760$, and $745 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $8.52(1 \mathrm{H}, \mathrm{d}), 8.2(1 \mathrm{H}, \mathrm{d})$, and $7.35(11 \mathrm{H}, \mathrm{m})$.

General Procedure for the Preparation of 1-Alkylideneamino-2-ethoxycarbonyl-4,6-diphenylpyridinium Salts.-2-Ethoxy-carbonyl-4,6-diphenylpyrylium tetrafluoroborate (24) (1 g) was suspended in $\mathrm{EtOH}(10 \mathrm{ml})$ and an equimolecular amount of the alkylidenehydrazone was added gradually.

The solution was refluxed for 4 h and the pyridinium was precipitated with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$.

1-Benzylidenamino- (56) (68%), m.p. $195^{\circ} \mathrm{C}$ (prisms from EtOH) (Found: C, 65.4 ; $\mathrm{H}, 4.7$; N, 5.4. $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 65.6 ; \mathrm{H}, 4.6 ; \mathrm{N}, 5.6 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1745$, $1620,1600,1570,1250,1060$, and $770 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2^{-}}\right.$ SO] $9.05(1 \mathrm{H}, \mathrm{s}), 8.95(1 \mathrm{H}, \mathrm{d}), 8.75(1 \mathrm{H}, \mathrm{d}), 7.85(15 \mathrm{H}$, $\mathrm{m}), 4.37(2 \mathrm{H}, \mathrm{q})$, and $1.2(3 \mathrm{H}, \mathrm{t})$; 2-ethoxycarbonyl-1-(p-tolylideneamino)-4,6-diphenylpyridinium tetrafluoroborate (57) $\left(43 \%\right.$), prisms m.p. $156-158{ }^{\circ} \mathrm{C}$ from EtOH (Found: $\mathrm{C}, 66.4 ; \mathrm{H}, 4.9$; $\mathrm{N}, 5.2$. $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.2$; $\mathrm{H}, 4.9$; $\mathrm{N}, 5.5 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1745,1620,1600,1560$, $1245,1190,900,820,770$, and $730 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.7$ ($1 \mathrm{H}, \mathrm{s}$), $8.29(1 \mathrm{H}, \mathrm{d}), 7.95(1 \mathrm{H}, \mathrm{d}), 7.4(14 \mathrm{H}, \mathrm{m}), 4.23$ $(2 \mathrm{H}, \mathrm{q}), 2.24(3 \mathrm{H}, \mathrm{s})$, and $1.1(3 \mathrm{H}, \mathrm{t})$; 1-(1-phenyl)ethyli-deneamino- (58) $\left(54 \%\right.$), m.p. $195-196{ }^{\circ} \mathrm{C}$ (prisms from EtOH) (Found: C, 65.9; H, 5.0; N, 5.4. $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.1 ; \mathrm{H}, 4.9 ; \mathrm{N}, 5.5 \%)$; $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1745$, $1620,1600,1570,1370,1250,1205,1060,770$, and 760 $\mathrm{cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.55(1 \mathrm{H}, \mathrm{d}), 8.21(1 \mathrm{H}, \mathrm{d}), 7.6(15 \mathrm{H}, \mathrm{m})$, $4.42(2 \mathrm{H}, \mathrm{q}), 2.2(3 \mathrm{H}, \mathrm{s})$, and $1.3(3 \mathrm{H}, \mathrm{t}) ;$ 1-(1-p-tolyl)-ethylideneamino- (60) $\left(41 \%\right.$), m.p. $200-201{ }^{\circ} \mathrm{C}$ (prisms from EtOH) (Found: C, 66.4; H, 4.9; N, 5.4. $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.7 ; \mathrm{H}, 5.1 ; \mathrm{N}, 5.4 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1745$, $1620,1600,1370,1345,1315.1250$, $1205,1060,770$, and $760 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.99(1 \mathrm{H}, \mathrm{d}), 8.1(1 \mathrm{H}, \mathrm{d}), 7.8$ $(14 \mathrm{H}, \mathrm{m}), 4.35(2 \mathrm{H}, \mathrm{q}), 2.39(3 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{s})$, and 1.21 ($3 \mathrm{H}, \mathrm{t}$); 1-(1-p-bromophenyl)ethylideneamino- (59) (35%), m.p. 209-211 ${ }^{\circ} \mathrm{C}$ (prisms from EtOH) (Found: C, 57.2; $\mathrm{H}, 3.9$; $\mathrm{Br}, 13.7 ; \mathrm{N}, 4.7 . \mathrm{C}_{28} \mathrm{H}_{24} \mathrm{BBrF}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C , 57.3 ; $\mathrm{H}, 4.1$; $\mathrm{Br}, 13.6$; $\mathrm{N}, 4.8 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1745$, $1620,1600,1370,1350,1310,1250,1205,1060,780$, and $770 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.99(1 \mathrm{H}, \mathrm{d}), 8.1(1 \mathrm{H}, \mathrm{d}), 7.9$ $(14 \mathrm{H}, \mathrm{m}), 4.35(2 \mathrm{H}, \mathrm{q}), 2.18(3 \mathrm{H}, \mathrm{s})$, and $1.21(3 \mathrm{H}, \mathrm{t})$.
3-Ethoxycarbonyl-4,6-diphenyl-1-[1-(4-pyridyl)ethylideneamino]pyridinium Tetrafuoroborate (61).-2-Ethoxycar-bonyl-4,6-diphenylpyrylium tetrafluoroborate $(0.78 \mathrm{~g}, 2$ mmol) and 4 -acetylpyridine hydrazone ($0.270 \mathrm{~g}, 2 \mathrm{mmol}$) in $\mathrm{MeOH}(8 \mathrm{ml})$ were stirred at $20^{\circ} \mathrm{C}$ for 0.5 h . The 4 -acetylN -(1-ethoxycarbonyl-1-oxo-3,5-diphenylpent-2,4-dienyl)-
pyridininm hydrazone tetrafluoroborate was separated ($0.93 \mathrm{~g}, 88 \%$), m.p. $146-149{ }^{\circ} \mathrm{C}$ (decomp.), prisms from EtOH (Found: C, 61.3; H, 4.9; N, 7.9. $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 61.5 ; \mathrm{H}, 4.9 ; \mathrm{N}, 7.9 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3370$, 3 270, 3 170, 1710 , 1 685, 1500 , 1450 , 1370 , 1260 , 1210 , $1060,770,760,750$, and $730 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 7.7(15 \mathrm{H}$, $\mathrm{m}), 6.72(1 \mathrm{H}, \mathrm{s}), 6.24(1 \mathrm{H}, \mathrm{s}), 4.14(2 \mathrm{H}, \mathrm{q}), 1.54(3 \mathrm{H}, \mathrm{s})$, and $1.26(3 \mathrm{H}, \mathrm{t})$. This compound ($0.200 \mathrm{~g}, 0.38 \mathrm{mmol}$) was refluxed in absolute EtOH (5 ml) during 3 h to give, from the cooled solution, 2 -ethoxycarbonyl-4,6-diphenyl-1-[1-(4-pyridyl)ethylideneamino]pyridinium tetrafluoroborate ($0.140 \mathrm{~g}, 73 \%$), m.p. $171-176{ }^{\circ} \mathrm{C}$ (decomp.), prisms from EtOH (Found: C, 63.4; H, 4.6; N, 8.2. $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 63.6 ; \mathrm{H}, 4.7 ; \mathrm{N}, 8.2 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1735$, $1620,1600,1410,1370,1345,1310,1250,1210$, 1060 , $1010,900860,825,765$, and $755 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.9$ $(1 \mathrm{H}, \mathrm{d}), 8.73(1 \mathrm{H}, \mathrm{d}), 8.0(14 \mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{q}), 2.12(3 \mathrm{H}$, s), and $2.14(3 \mathrm{H}, \mathrm{t})$.

General Procedures for the Formation of 4-Oxidopyrido-[1,2-b]pyridazinium Zwitterions.-Procedure A. The 1-alkylidenamino-2-ethoxycarbonylpyridinium (0.200 g), 1,2dimethoxyethane (5 ml), and NaH (equimolecular) were stirred for 3 h at $-5^{\circ} \mathrm{C}$ under N_{2}. The precipitated yellow solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ was washed with water (10 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated at $20^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$.

Procedure B. Pyridinium salt (0.200 g), dry THF (5 ml), and potassium carbonate (equimolecular) were stirred for 5 h at $20^{\circ} \mathrm{C}$ and then treated as in A above.

4-Oxido-2,6,8-triphenylpyrido[1,2-b]pyridazinium zwitterion (62). This compound (50% procedure A, 68% procedure B) had m.p. $288-289{ }^{\circ} \mathrm{C}$ (prisms from EtOH) (Found: C, 83.0; H, 4.8; N, 7.4. $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires C, $83.4 ; \mathrm{H}, 4.8 ; \mathrm{N}, 7.5 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) \mathrm{l} 590$, 1580 , 1480 , $1465,1455,1430,1400,945$, and $770 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.98$ ($1 \mathrm{H}, \mathrm{d}$), $7.51(16 \mathrm{H}, \mathrm{m})$, and $6.92(1 \mathrm{H}, \mathrm{s})$.

2-p-Bromophenyl-4-oxido-6,8-diphenylpyrido[1,2-b]pyridazinium zwitterion (63). This compound (38% procedure A, $\mathbf{7 3} \%$ procedure B) had m.p. $238-240{ }^{\circ} \mathrm{C}$ (prisms from EtOH) (Found: C, 66.1; H, 3.6; $\mathrm{Br}, 17.0$; $\mathrm{N}, 6.0$. $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 66.2 ; \mathrm{H}, 4.0 ; \mathrm{Br}, 17.0 ; \mathrm{N}$, $5.9 \%)$; $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 3400\left(\mathrm{H}_{2} \mathrm{O}\right), 1590,1570,1480$, $1450,945,825$, and $760 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.95(1 \mathrm{H}, \mathrm{d}), 7.6$ ($15 \mathrm{H}, \mathrm{m}$), and $6.86(1 \mathrm{H}, \mathrm{s})$.

4-Oxido-6,8-diphenyl-2-p-tolylpyrido[1,2-b]pyridazinium zwitterion (64). This compound (32% procedure A, 68% procedure B) had m.p. $249-250{ }^{\circ} \mathrm{C}$ (prisms from EtOH) (Found: C, 83.3; H, 5.1; N, 7.2. $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires C, $83.5 ; \mathrm{H}, 5.1 ; \mathrm{N}, 7.2 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1590,1575,1485$, $1465,1450,945,820$, and $760 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.97(1 \mathrm{H}$, d), $7.45(15 \mathrm{H}, \mathrm{m}), 6.92(1 \mathrm{H}, \mathrm{s})$, and $2.28(3 \mathrm{H}, \mathrm{s})$.

We thank the Fundacion Cultural ' Esteban Romero ' of Murcia (Spain) for a grant (to A. T. T.).
[0/1654 Received, 30th October, 1980]

REFERENCES

1 A. R. Katritzky, Tetrahedron, 1980, 36, 679.
${ }^{2}$ H.-J. Timpe, Adv. Heterocycl. Chem., 1974, 17, 218; H. C. van der Plas, 'Ring Transformations of Heterocycles', Academic Press, London, 1973, vol. 2, pp. 24-30; W. J. McKillip, E. A. Sedor, B. M. Culbertson, and S. Wawzonek, Chem. Rev., 1973, 73, 255.
${ }^{3}$ For earlier references see A. T. Balaban, P. T. Frangopol, G. Mateesco, and C. D. Nenitzesco, Bull. Soc. chim. Fr., 1962, 298.
${ }^{4}$ A. T. Balaban, Tetrahedron, 1968, 24, 5059.
${ }^{5}$ V. Snieckus and G. Kan, Chem. Commun., 1970, 1208.
${ }^{6}$ J. Elguero, R. Jacquier, and G. Tarrago, Bull. Soc. chim. Fr., 1969, 2876.
\Rightarrow W. Schneider, Annalen, 1924, 438, 115.
${ }^{8}$ R. R. Schmidt and G. Berger, Chem. Ber., 1976, 109, 2936.
${ }^{9}$ A. T. Balaban and W. Silhan, Tetrahedron, 1970, 26, 743.
${ }^{10}$ G. V. Boyd, Chem. Comin., 1967, 954.
${ }_{11}$ G. V. Boyd and A. J. H. Summers, J. Chem. Soc. C, 1971, 409.
${ }_{12}$ S. Oae, T. Sakurai, and S. Kozuka, Chem. Lett., 1974, 6, 621; S. Oae and T. Sakurai, Bull. Chem. Soc. Jpn., 1976, 49, 730.
${ }_{13}$ (a) J. B. Bapat, R. J. Blade, A. J. Boulton, J. Epsztajn, A. R. Katritzky, J. Lewis, P. Molina-Buendia, P.-L. Nie, and C. A. Ramsden, Tetrahedron Lett., 1976, 2691; (b) A. R. Katritzky, J. Lewis, and P.-L. Nie, J. Chem. Soc., Perkin Trans. 1, 1979, 446.
${ }^{14}$ R. Neidlein and P. Witerzens, Arch. Pharm. (Weinheim, Ger.), 1976, 309, 649.
${ }_{15}{ }^{15}$ A. T. Balaban and C. D. Nenitzescu, Liebigs Ann. Chem., 1959, 625, 74.
${ }^{16}$ R. Lombard and A. Kress, Bull. Soc. chim. Fr., 1960, 1528.
${ }_{17}$ A. Kakehi, S. Ito, K. Uchiyama, and Y. Konno, Chem. Lett., 1976, 413.
${ }^{18}$ M. Lempert-Sreter and K. Lempert, Acta Chim. Acad. Sci. Hung., 1970, 65, 443; 1976, 88, 189.
${ }_{19}$ A. R. Katritzky, P.-L. Nie, A. Dondoni, and D. Tassi, J. Chem. Soc., Perkin Trans. 1, 1979, 1961.
${ }^{20}$ V. N. Yandovskii and T. K. Klindukhova, Zh. Org. Khim., 1974, 10, 730.
${ }^{21}$ For references see A. R. Katritzky and P. Ballesteros, preceding paper.
${ }_{22}$ T. Yamazaki, M. Nagata, F. Nohara, and S. Urano, Chem. Pharm. Bull., 1971, 19, 159; T. Yamazaki, M. Nagata, S. Hirokami, and S. Miyakoshi, Heterocycles, 1977, 8, 377.
${ }^{23}$ A. Kakehi, S. Ito, T. Funahashi, and Y. Ota, J. Org. Chem., 1976, 41, 1570.
${ }^{24}$ R. Lombard and J. P. Stephan, Bull. Soc. chim. Fr., 1958, 1458.
${ }_{26}$ A. Chermprapai, unpublished results.
${ }^{26}$ A. R. Katritzky and S. S. Thind, J. Chem. Soc., Perkin Trans. 1, 1980, 1895.

